هارمونیک ها در سیستم قدرت

هارمونیک  : نقش خازنها به عنوان المان های الکتریکی و الکترونیکی کارآمد در صنایع مربوط به تولید و انتقال و توضیع امروزی غیر قابل انکار است بگونه ای که دیگر هرگز نمی توان چنین صنایعی را بدون وجود خازنهای نیرو متصور شد.از این رو شناخت کامل خازنها و عوامل تاثیر گذار برآنها و حفظ و نگهداری و نظارت دقیق بر آنها ، برای افزایش طول عمر خازن ها و کار کرد بهینه آنها امری است الزامی و اجتناب ناپذیر.

کلید واژه- خازن قدرت ، فرکانس ، هارمونیک ها.

مقدمه
درسالهای اولیه هارمونیکها در صنایع چندان رایج نبودند.به خاطر مصرف کننده های خطی متعادل. مانند : موتورهای القایی سه فاز،گرم کنندها وروشن کننده های ملتهب شونده تا درجه سفیدی و ….. این بارهای خطی جریان سینوسی ای در فرکانسی برابر با فرکانس ولتاژ می کشند.

بنابراین با این تجهیزات اداره کل سیستم نسبتا با سلامتی بیشتری همراه بود. ولی پیشرفت سریع در الکترونیک صنعتی در کاربری صنعتی سبب بوجود آمدن بارهای غیر خطی صنعتی شد. در ساده ترین حالت ، بارهای غیرخطی شکل موج بار غیر سینوسی از شکل موج ولتاژ سینوسی رسم می کنند (شکل موج جریان غیر سینوسی).

پدیدآورنده های اصلی بارهای غیر خطی درایوهای AC / DC ، نرم راه اندازها ، یکسوسازهای 6 / 12 فاز و … می باشند. بارهای غیرخطی شکل موج جریان را تخریب می کنند. در عوض این شکل موج جریان شکل موج ولتاژ را تخریب می نماید.

بنابراین سامانه به سمت تخریب شکل موج  در هر دوی ولتاژ و جریان می شود. در این مقاله سعی شده است تا بزبانی هرچه ساده تر توضیحی در مورد نحوه عملکرد هارمونیک ها و راه کاری برای دوری از تاثیر گذاری آنها بر خازنها ی نیرو ارائه شود.

اساس هارمونیک ها :

اصولا هارمونیک ها آلوده سازی شکل موج را در اشکال سینوسی آنها نشان می دهند. ولی فقط در مضارب فرکانس اصلی . تخریب شکل موج را می توان در فرکانس های مختلف (مضارب فرکانس اصلی) بعنوان یک نوسان دوره ای بوسیله آنالیز فوریه تجزیه و تحلیل کرد.

در حال حاضر هارمونیکهای فرد و زوج و مرتبه 3 در اندازه های مختلف ضرایب فرکانس های مختلف در سامانه های الکتریکی موجودند که مستقیما تجهیزات سامانه الکتریکی را متاثر می سازند. در معنایی وسیعتر هارمونیکهای زوج و مرتبه 3 هریک تلاش می کنند که دیگری را خنثی نمایند.

ولی در مدت زمانی که بار نا متعادل است این هارمونیک های زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژی شدید می شوند. با تمام احوال هارمونیک های فرد اول مانند هارمونیک پنجم ، هفتم ، یازدهم ، سیزدهم و …. عملکرد این تجهیزات الکتریکی را تحت تاثیر قرار می دهند. برای فهم بهتر تاثیر هارمونیک ها ، شکل زیر تاثیر تخریب هارمونیک پنجم بر شکل موج سینوسی را نشان می دهد :

هارمونیک های ولتاژ و جریان تاثیرات متفاوتی بر تجهیزات الکتریکی دارند. ولی عموما بیشتر تجهیزات الکتریکی به هارمونیکهای ولتاژ بسیار حساس اند. تجهیزات اصلی نیرو مانند موتورها، خازن ها و غیره بوسیله هارمونیکهای ولتاژ متاثر می شوند.

به طور عمده هارمونیکهای جریان موجب تداخل مغناطیسی (Magnetic Interfrence) و همچنین موجب افزایش اتلاف در شبکه های توزیع می شوند. هارمونیکهای جریان وابسته به بار اند ، در حالی که سطح هارمونیکهای ولتاژ به پایداری سامانه تغذیه و هارمونیکهای بار (هارمونیکهای جریان) بستگی دارد. عموما هارمونیک های ولتاژ از هارمونیک های جریان کمتر خواهند بود.    

تشدید:

اساسا تشدید سلفی – خازنی در همه انواع بارها مشاهده می شود. ولی اگر هارمونیک ها در شبکه توضیع شایع نباشند تاثیر تشدید فرونشانده می شود.

در هر ترکیب سلفی – خازنی چه در حالت سری و چه در حالت موازی ، در فرکانسی خاص تشدید رخ می دهد که این فرکانس خاص فرکانس تشدید نامیده می شود. فرکانس تشدید فرکانسی است که در آن رآکتنس خازنی (Xc) و رآکتنس القایی (XL) برابر هستند.

برای ترکیبی مثالی برای بار صنعتی که شامل اندوکتانس بار و یا رآکتنس ترانسفورماتور که بعنوان XL عمل می کند و رآکتنس خازن تصحیح ضریب توان که بصورت Xc خودنمایی می کند فرکانس تشدیدی برابر با LC خواهیم داشت . رآکتنس خازنی متناسب با فرکانس کاهش می یابد (توجه : Xc با فرکانس نسبت عکس دارد). در حای که رآکتنس القایی متناسب با آن افزایش می یابد (توجه

: XL با فرکانس نسبت مستقیم دارد).این فرکانس تشدید به سبب متغیر بودن الگوی بار متغیر خواهد بود. این مساله برای ظرفیت خازنی ثابت کل برای اصلاح ضریب توان پیچیده تر است. برای درک صحیح این پدیده لازم است دو نوع وضعیت تشدید شامل حالت تشدید سری و حالت تشدید موازی مورد توجه قرار گیرند. این دو امکان در زیر توضیح داده می شوند.

تشدید سری:

یک ترکیب سری رآکتنس سلفی – خازنی ، مدار تشدید سری شکل می دهد که در شکل زیر نشان داده شده است.

به خاطر ترکیب سری سلف و خازن ، در فرکانس تشدید امپدانس کل به پایین ترین سطح کاهش می یابد و این امپدانس در فرکانس تشدید طبیعتی مقاومتی دارد. بنا براین در فرکانس تشدید رآکتنس خازنی و رآکتنس سلفی (القایی) برابر هستند.این امپدانس پایین برای توان ورودی در فرکانس تشدید ، افزایش توانی جریان را نتیجه می دهد.شکل داده شده زیر رفتار امپدانس خالص در وضعیت تشدید سری را نشان می دهد.

در کاربری صنعتی رآکتنس ترانسفورماتور قدرت به علاوه خازنهای اصلاح ضریب توان در سمت ولتاژ پایین به عنوان یک مدار تشدید موازی برای سمت ولتاژ بالای ترانسفورماتور عمل می کند. اگر این فرکانس تشدید ترکیب سلف و خازن بر فرکانس هارمونیک شایع در صنعت منطبق شود ، بخاطر بستری با امپدانس پایین ارائه شده توسط خازن ها برای هارمونیک ها ، منجر به افزایش توانی جریان خازن ها خواهد شد.

از این رو خازن های ولتاژ پایین در سطحی بسیار بالا اضافه بار پیدا خواهند کرد که همچنین این عمل موجب تحمیل بار اضافی بر ترانسفورماتور می شود. این پدیده منجر به تخریب ولتاژ در شبکه ولتاژ پایین می شود.

تشدید موازی:
یک تشدید موازی ترکیبی از رآکتنس خازنی و القایی است که در شکل زیر نمایش داده شده است.

در اینجا رفتار امپدانس برعکس حالت تشدید موازی خواهد بود که در شکل داده شده در زیر ، نشان داده شده است.در فرکانس تشدید امپدانس منتجه مدار به مقداری بالا افزایش می یابد. این ، منجر به بوجود آمدن مدار تشدید موازی میان خازن های اصلاح ضریب توان و اندوکتانس بار می شود که نتیجه آن عبور ولتاژ بسیار بالا هم اندازه  امپدانس ها و جریان های گردابی بسیار بالا درون حلقه خواهد بود.

در کاربری صنعتی خازن اصلاح ضریب توان مدار تشدید موازی با اندوکتانس بار تشکیل می دهد.هارمونیک های تولید شده از سمت بار رآکتنس شبکه را افزایش می دهند. که موجب بلوکه شدن هارمونیک های سمت تغذیه می شود.این منجر به تشدید موازی اندوکتانس بار و اندوکتانس خازنی می شود. مدار LC (سلفی – خازنی) مواز ی ، شروع به تشدید میان آنها می کند که منجر به ولتاژ بسیار بالا و جریان گردابی بسیار بالا در درون حلقه مدار سلف – خازن (LC) می شود. نتیجه این امر آسیب به تمام سمت ولتاژ پایین سامانه الکتریکی است.

ایزوله کردن تشدید موازی از ایزولاسیون تشدید سری نسبتا پیچیده تر است.اساسا این امر بخاطر تنوع بار صنعتی از زمانی به زمان دیگر است که موجب تغییر فرکانس تشدید می شود. شکل زیر تاثیر ظرفیت خازنی ثابت و اندوکتانس متغیر را نشان می دهد.

 این تغییر مداوم فرکانس تشدید ممکن است موجب تطبیق فرکانس تشدید بر فرکانس هارمونیک شود که ممکن است منتج به ولتاژ بالا و جریان بالا که سبب نقص و خرابی تجهیزات الکتریکی می شوند ، گردد.

بنا بر این در هر دو تشدید موازی و سری خازنهای قدرت متاثر هستند که بکار گیری دستگاه های حفاظتی و ایمنی را برای خازنها ایجاب می نماید. این امر درک صحیح بر خازنهای قدرت را قبل از از اعمال تصحیح بخاطر تاثیر هارمونیک ها و تشدید ایجاب می نماید.

خازنهای قدرت:

خازنهای اصلاح ضریب توان نسبت به هارمونیک ها حساس اند و بیشتر عیوب خازنهای قدرت ، عیوبی با طبیعت زیر را نشان می دهند :

هارمونیک ها – هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و …

تشدید

اضافه ولتاژ

امواج کلید زنی

جریان هجومی

ولتاژ آنی بازگیری جرقه

تخلیه / بازبست ولتاژ

بسته به طراحی ساختاری اساسی ، حدود پایداری در مقابل اضافه ولتاژ ، اضافه جریان و هارمونیکها برای دور کردن خازن از خرابی بسیار مهم است.

اساسا خازن ها امواج کلید زنی تولید می کنند که عموما به عنوان جریان هجومی و اضافه ولتاژ آنی دسته بندی می شوند.

جریان هجومی پدیده ای است که هنگام به مدار وصل کردن خازن ها رخ می دهد. امپدانس ارائه شده توسط خازن طبیعتا بسیار کم و مقاومتی است. این امر منجر به جریان هجومی به بزرگی 50 تا 100 برابر جریان اسمی می شود که از خازن عبور می کند ، اما چرا از خازن؟ زیرا امپدانس ترانسفورماتور در زمان روشن کردن خازن ها فقط در مقابل شار جریان مقاومت می کند.

این امر هنگامی پیچیده تر می گردد که در ترکیب موازی بانک خازنی ممکن است جریان هجومی کلید زنی به سطحی بالاتر از 200 تا 300 برابر جریان اسمی برسد. این جریان هجومی نتیجه تخلیه خازن های از پیش شارژ شده موازی با آن می باشد. در زیر این مطلب نشان داده شده است.نوعا جریان هجومی علاوه بر تخریب در شکل موج جریان سبب تخریب در شکل موج ولتاژ می شود.

در هنگام خاموش کردن (از مدار خارج کردن) خازن ها ، بسته به شارژ ذخیره شده در آن ، اضافه ولتاژ ناگهانی بالاتری در زمان خاموش کردن خازن ها بوجود خواهد آمد که ممکن است موجب پدید آمدن جرقه در پایه ها شود.

هنگامی که خازن خاموش می شود شار الکتریکی در خود نگه می دارد و بوسیله مقاومتهای تخلیه ، تخلیه (Discharge) می شود. مدت زمان تخلیه عموما بین 30 تا 60 ثانیه می باشد. تا زمانی که تخلیه بشکل موثری صورت نگرفته نمی توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخلیه کامل دوباره موجب افزایش جریان هجومی می شود.

علاوه بر دستگاه های مسدود کننده هارمونیک ها که با صحت خازن ها نسبت مستقیم دارند ، و در سر خط بعدی تشریح می شوند ، دستگاه های تحلیل برنده امواج کلید زنی مثل جریان هجومی ، اضافه ولتاژ آنی و غیره نیاز دارند که بطور دقیق تعریف و بررسی شوند.

دستگاه های مسدود کننده هارمونیک ها:

برای کاربری سالم خازن ها لازم است که فرکانس تشدید مدار LC (سلف – خازن) که شامل ادوکتانس بار و خازنهای اصلاح ضریب توان می شود ، به فرکانسی دور از کمترین فرکانس هارمونیک تغییر داده شود. برای مثال هارمونیک هایی که در سامانه تولید می شوند و خازن های قدرت را متاثر می سازند ، هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و غیره هستند. پایین ترین هارمونیکی که بر خازن ها تاثیر می گذارد هارمونیک پنجم است که در فرکانس 250 هرتز دیده می شود. اساسا اگر خازن ها با سلف ها موازی شده باشند ، انتخاب مقدار اندوکتانس به شکل زیر است :

ترکیب سری LC (سلف – خازن) در فرکانسی زیر 250هرتز تشدید می کند . بنابراین در همه فرکانس های هارمونیک ها ترکیب سری سلف و خازن مانند یک ترکیب سلفی عمل خواهد کرد و امکان تشدید برای هارمونیک پنجم یا هر هارمونیک بالاتری از بین می رود. شکل زیر نامیزان سازی (De – Tuning) خازن ها را نشان می دهد.

این ترکیب سلف و خازن که در آن فرکانس تشدید در فرکانسی دور از فرکانس هارمونیک تنظیم شده است ، مدار LC (سلف – خازن) نامیزان شده

(De-Tuned) نام دارد. ضریب نا میزان سازی نسبت رآکتنس به طرفیت خازنی است. در مدار خازنی نامیزان شده ، اساسا سلف مانند دستگاه مسدود کننده هارمونیک ها عمل می کند. برای خازن ها ضریب مناسب نامیزان سازی حدود % 7 است که فرکانس تشدید را در 189 هرتز تنظیم می کند.

اما ، نامیزان سازی % 5.67 همچنین در جایی استفاده می شود که فرکانس تشدیدی معادل 210 هرتز دارد . هر دو درجه نامیزان سازی ، مسدود کردن (بلوکه کردن) هارمونیک ها از خازن ها را تضمین می کنند. شکل زیر درجه نامیزان سازی را نمایش می دهد.

بانک های نامیزان سازی خازن:
بانک های نامیزان سازی خازن نیازمند آن هستندکه با نکات اساسی زیر مشخص شوند :

انتخاب درجه نامیزان سازی

محاسبه خازن کل خروجی مورد نیاز

محاسبه افزایش ولتاژ بوسیله سلف های سری

درجه نامیزان سازی مطلوب بر پایه هارمونیک موجود است. لازم است که هارمونیک های سمت بار اندازه گیری شوند تا در درجه نامیزان تصمیم گیری شود.

خروجی خازن و سطح ولتاژ نیاز به انتخاب صحیح بر اساس درجه نامیزان سازی دارند. برای مثال برای %7 نامیزان سازی برای رسیدن به 200 کیلو ولت آمپر رآکتیو خروجی (KVAR) در 400 ولت ، نیاز به آن داریم که خازن 240 KVAR خروجی با ولتاژ 400 ولت انتخاب نماییم. این بدلیل افزایش ولتاژ بوسیله اندوکتانس سری است. مشابها برای رسیدن به 200 KVAR خروجی در ولتاژ 440 ولت به خازن های 240 KVAR خروجی 480 ولتی نیاز است.

محاسبه افزایش ولتاژ به سبب رآکتنس سری ، بر اساس نامیزان سازی است و به روش زیر انجام می گیرد :

( درجه نامیزان سازی – 1) / (ولتاژ نرمال مجاز) = ولتاژ خازن

سامانه خازنی ایده آل:

برای تصحیح ضریب توان در بار صنعتی کنونی که شامل هارمونیک ها و تشدید می شود ، یک سامانه اتصال خازنی اساسا باید خصوصیات زیر را دارا باشد :

ظرفیت خازنی متغیر بر اساس توان رآکتیو برای دوری از تغییر فرکانس تشدید. این امر انتخاب صحیح پنل های APFC را ممکن می سازد. پنل APFC باید خصوصیات زیر را داشته باشد.

حسگرها باید به طور مداوم سطح هارمونیک های ولتاژ را نمایش دهد و خازن ها را تحت زیر سطوح بالاتر هارمونیک ها محافظت نماید.

انتخاب محدوده هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین شناخت تخریب همه هارمونیک ها برای تنظیم حدود ایمن و همچنین پیش بینی تغییرات بعدی هارمونیک ها.

مونیتورینگ جریان RMS برای محافظت خازن ها تحت هر حالت تشدید.

کنترل مشخصات ، برای دوری از بکارگیری ظرفیت مازاد خازنی تحت حالت کم بار.

انتخاب خازن با عمر بالا و با تضمین مشخصات زیر :

ظرفیت اضافه بار : حداقل دو برابر جریان اسمی به طور مداوم و 350 برابر آن هنگام جریان هجومی.

قابلیت پایداری در مقابل اضافه ولتاژ :بیشتر از %10 و بالاتر از ولتاژ مجاز بصورت پیوسته.

قابلیت پایداری در مقابل هارمونیک ها : تضمین محدوده های هارمونیک های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین برای محدوده های THD.

مدار سلفی De – Tuned برای مسدود کردن هارمونیک ها (الگوی هارمونیک بار باید قبل از تعیین درجه نامیزان سازی (De – Tuning) اندازه گیری شود).

انتخاب سطح خازن و سطح ولتاژ براساس درجه نامیزان سازی.

دستگاه های کلیدزنی با تقلیل دهنده های داخلی برای تقلیل امواج کلید زنی برای خازن های قدرت.

اساسا این خصوصیات با مطالعه متناسب هارمونیک های ولتاژ بار همراه است که تضمین می کند که تاثیر مخرب هارمونیک ها و تشدید از خازن ها دور شود که بدین وسیله عمر خازن ها و کارایی کل سامانه الکتریکی را افزایش می دهد.

نتیجه گیری

علم به شرایط و خصوصیات خازن ها و عوامل موثر بر آنها از جمله هارمونیک ها نه تنها موجب افزایش امنیت و سلامتی و طول عمر آنها خواهد شد بلکه سبب کاهش هزینه های پیش بینی شده و نشده در بکار گیری انرژی الکتریکی می شود.

هارمونیک ها در شبکه:

مقدمه:

 هنگامی‎‎که استفاده از مبدل‎های الکترونیک قدرت در اواخر دهه 1970 معمول گردید، توجه بسیاری از مهندسین شرکت‎های برق درمورد توانایی پذیرش اعوجاج هارمونیکی توسط سیستم‎های قدرت را برانگیخت .

پیش‎‎بینی‎های مأیوس‎‎کننده‎‎ای از سرنوشت سیستم‎‎های قدرت درصورت اجازه استفاده ازاین تجهیزات انجام گرفت. درحالی‎‎که بعضی ازاین نگرانی‎ها احتمالاً بیش از حد قلمداد گردیدند، ولی بررسی مفهوم کیفیت برق مدیون این افراد به‎دلیل پیگیری آنها درمورد این مسئله می‎‎باشد.
بروز هارمونیک در سیستم‎های برق اولین پیامد عناصر غیرخطی در شبکه است. به‎‎‎خاطر گسترش فزاینده استفاده از عناصر غیرخطی در سیستم‎‎های برق، مانند راه‎‎اندازها (درایورهای تنظیم سرعت) و مبدل‎‎های الکترونیکی قدرت، مقدار هارمونیک شکل موج جریان و ولتاژ به‎‎‎طور چشمگیری افزایش یافته است و بنابراین اهمیت موضوع کاملاً مشخص است.

بررسی مسائل هارمونیک‎‎ها منجر به تحقیقاتی گردید که نتایج آن نقطه‎‎نظرات متعددی درمورد کیفیت برق بود. به‎‎نظر برخی از محققین، اعوجاج هارمونیکی هنوز مهمترین مسئلـه کیفیت برق می‎‎باشد. مسائل هارمونیکی با بسیاری از قوانین معمولی طراحی سیستم‎های قدرت و عملکرد آن تحت فرکانس اصلی مغایر است. بنابراین مهندس برق با پدیده‎‎های ناآشنایی روبرو می‎‎شود که نیاز به ابزار پیچیده و تجهیزات پیشرفته برای حل مشکلات و تجزیه و تحلیل آنها دارد.

گرچه تحلیل مسائل هارمونیکی می‎‎تواند دشوار باشد، ولی خوشبختانه همه سیستم قدرت دارای مشکل هارمونیکی نیست و فقط درصد کمی از فیدرهای مربوط به سیستم‎های توزیع تحت‎‎تأثیر عوامل ناشی از هارمونیک‎‎ها قرار می‎‎گیرند.

مشترکین برق در صورت وجود هارمونیک‎ها مشکلات زیادتری از شرکت‎های برق را تحمل می‎کنند. مشترکین صنعتی که از محرکه‎‎های موتور با قابلیت تنظیم سرعت، کوره‎‎های قوس الکتریکی، کوره‎‎های القایی، یکسوکننده‎‎ها ، اینورترها، دستگاه‎‎های جوش و نظایر آن استفاده می‎‎کنند، نسبت به مسائل ناشی از اعوجاج هارمونیکی ضربه‎‎پذیرتر از بقیه مشترکین می‎باشند.

اعوجاج هارمونیکی یک پدیده جدید در سیستم‎های قدرت به شمار نمی‎رود. نگرانی ناشی از اعوجاج در بسیاری از دوره‎ها درسیستم‎های قدرت الکتریکی جریان متناوب وجود داشته و دنبال شده است. جستجوی منابع و مطالب تکنیکی دهه‎های قبل نشان می‎دهد که مقالات مختلفی دررابطه با این موضوع انتشار یافته است.

اولین منابع هارمونیکی شناخته‎‎ شده، ترانسفورماتورها بودند و اولین مشکل نیز در سیستم‎های تلفن پدید آمد. استفاده گروهی از لامپ‎های قوس الکتریک به‎‎‎دلیل مؤلفه‎ های هارمونیکی توجهات خاصی را برانگیخت ولی این مسائل به اندازه اهمیت مسئله مبدل ‎های الکترونیک قدرت در سال‎های اخیر نبوده است.

خوشبختانه در طی این سال ها پژوهشگران متوجه شده اند که اگر سیستم انتقال به نحو مناسبی طراحی گردد، به‎‎نحوی که بتواند مقدار توان مورد نیاز بارها را به راحتی تأمین نماید، احتمال ایجاد مشکل ناشی از هارمونیک‎ها برای سیستم قدرت بسیار کم خواهدبود، گرچه این هارمونیک‎ها می‎توانند موجب مسائلی در سیستم‎های مخابراتی شوند. اغلب در سیستم‎های قدرت مشکلات زمانی بروز می‎کنند که خازن‎های موجود در سیستم باعث ایجاد تشدید دریک فرکانس هارمونیکی گردند.

دراین شرایط اغتشاشات و اعوجاجات، بسیار بیش از مقادیر معمول می‎گردند. امکان ایجاد این مشکلات در مورد مراکز کوچک مصرف وجود دارد ولی شرایط بدتر در سیستم‎های صنعتی به‎دلیل درجه زیادی از تشدید رخ می‎دهد.

علت ایجاد اعوجاج هارمونیکی
اعوجاج هارمونیکی در سیستم‎های قدرت ناشی از عناصر غیرخطی می‎باشد. عنصر غیرخطی عنصری است که جریان آن متناسب با ولتاژ اعمالی نمی‎باشد افزایش چند درصدی ولتاژ ممکن است باعث شود که جریان دوبرابر شده و نیز موج جریان شکل دیگری به خود بگیرد. این مورد ساده ای از منبع تولید اعوجاج در سیستم قدرت می‎باشد.
 
هر شکل موج اعوجاجی پریودیک را می‎توان به صورت جمع موج‎های سینوسی بیان نمود. یعنی وقتی که شکل موج از یک سیکل به سیکل دیگر تغییر نکند، این موج را می‎توان به صورت جمع امواج سینوسی خالص که درآن فرکانس هر موج سینوسی، مضرب صحیحی از فرکانس اصلی موج اعوجاجی است نمایش داد.

این موج‎های سینوسی که فرکانس آن‎ها ضریب صحیحی از فرکانس اصلی می‎باشند، هارمونیک‎های مؤلفه اصلی گویند. جمع این موج‎های سینوسی به سری فوریه معروف است این مفهوم ریاضی اولین بار توسط فوریه ریاضیدان فرانسوی مورد توجه قرار گرفت.

مزایای فنی و اقتصادی کاهش هارمونیک‎‎ها
اگرچه بحث تفصیلی درمورد خسارات هارمونیک‎‎ها ، پیچیده است ولی می‎توان در یک جمع‎‎بندی اجمالی مزایای کاهش هارمونیک‎‎ها را به‎شرح زیر بیان نمود :
1- کاهش تلفات تجهیزات الکتریکی و شبکه برق‎‎رسانی
2- آزادسازی ظرفیت تجهیزات شبکه مانند موتورهای الکتریکی و ترانسفورماتورها
3- افزایش طول عمر تجهیزات به‎دلیل کاهش تلفات و کاهش درجه حرارت
4- کاهش احتمال رزونانس موازی و سری در شبکه
5- افزایش راندمان موتورهای الکتریکی
6- کاهش خطای عملکرد رله‎‎ها ، تجهیزات کنترلی و حفاطتی شبکه ناشی از تأثیرات هارمونیک‎‎ها
7- کاهش خطای قرائت دستگاه‎‎های اندازه‎گیری و کنتورها و در نتیجه کاهش خطای مبالغ دریافتی از مشترکین

8- عملکرد بهتر تجهیزات شبکه و مشترکین از جمله ماشین‎‎های الکتریکی به‎دلیل کاهش اثر گشتاورهای مخالف به‎واسطه برخی از هارمونیک‎‎ها
9- بهبود رضایت مشترکین به‎دلیل بهبود کیفیت توان

تجهیزات آسیب‎‎پذیر
موتورهای الکتریکی ازجمله وسایلی هستند که درمعرض بیشترین اثر نامطلوب هارمونیک‎ها قراردارند، هارمونیک حاصل‎‎از ولتاژ تغذیه باعث تلفات بالاتر در موتورهای الکتریکی شده که باعث کاهش ظرفیت‎ نامی می‎‎شود. کاهش عمر و فرسوده شدن عایق‎‎بندی موتور به‎‎‎خاطر افزایش دمای داخلی بالاتراز میزان نامی، از دیگر اثرات نامطلوب هارمونیک‎ها در موتورهای الکتریکی است.
سیستم عایق‎‎بندی آسیب‎‎پذیرترین قسمت یک موتور الکتریکی درمقابل افزایش دمای حاصل‎‎از هارمونیک است.تسریع در‎ فرسایش، خطا و مشکلات عایقی و کاهش عمر معمول‎‎ترین نشانه‎‎های مشاهده شده در سیستم‎های عایقیِ درمعرض اضافه حرارت، میباشد‎‎باشد.

منابع تولید هارمونیک

پیدایش عناصر نیمه هادی و المان‎‎های غیرخطی نظیر دیود ، تریستور و … و استفاده فراوان از آنها در شبکه‎‎های قدرت عامل جدیدی برای ایجاد هارمونیک در سیستم‎های قدرت به‎وجود آورد. کاربرد این عناصر را می‎توان در تجهیزات و سیستم‎های قدرت زیر دید:
–         کوره‎های قوس الکتریکی و القایی
–         یکسوکننده‎‎ها و مبدل‎‎های الکترونیک قدرت
–         تجهیزات مورد استفاده در کنترل‎‎کننده‎های سرعت ماشین‎های الکتریکی
–         کاربرد SVC بعنوان ابزار مهمی درکنترل توان راکتیو
–         بارهای غیرخطی شامل دستگاه‎‎های جوشکاری
–         جریان مغناطیسی ترانسفورماتور
از سوی دیگر عوامل زیر را نیز می‎توان به عنوان تولیدکننده هارمونیک در نظر گرفت:
–         تولید شکل موج غیر سینوسی توسط ماشین‎های سنکرون ناشی از وجود شیارها و عدم توزیع یکنواخت سیم‎‎پیچی‎های استاتور
–         توزیع غیر سینوسی فوران مغناطیسی در ماشین‎های سنکرون
همچنین صنایع زیر را می‎توان از جمله عوامل تولید هارمونیک در شبکه‎های الکتریکی محسوب نمود:
–    صنایع شامل مجتمع‎های شیمیایی و پتروشیمی و نیز صنایع ذوب آلومینیم که از یکسوکننده‎های پرقدرت برای تولید برق DC مورد نیـاز انجام فرآیندهای شیمیـائی و ذوب آلومینیـم استفـاده می‎کنند. با توجـه به قـدرت بالا، این یکسـوکننده‎ها هارمونیک قابل ملاحظه‎ای در شبکه قدرت به وجود می‎آورند.

   استفاده از سیستم‎های الکترونیک قدرت در سیستم حمل و نقل برقی مانند اتوبوس برقی و متروها باعث می‎شود سطوح زیادی از هارمونیک به سیستم توزیع تزریق شود.

    بارهای غیرخطی مانند کوره‎های قوس الکتریکی که در صنایع ذوب‎‎آهن استفاده می‎شود از عوامل تولید هارمونیک در مقیاس بزرگ می‎باشند.

 

هارمونیک

بدون دیدگاه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *